
Chapter 9

Selberg’s Sieve

Atle Selberg developed the sieve that is now referred to as “Selberg’s sieve” in

the 1940’s, when he was trying to study the zeros of the Riemann zeta function.

Like Brun’s sieve, the Selberg sieve stems from the principle of inclusion-exclusion.

However, Selberg introduces some clever innovations that allow for improving on

the error term obtained via Brun’s sieve (at least, in certain applications).

In this chapter, we will re-derive several of the results from the Brun’s sieve

chapters, but this time with better error terms. In particular, we will see how

to obtain improved bounds for the count of twin prime pairs, and for the Brun-

Titchmarsh inequality. We will also see how to use Selberg’s sieve in order to obtain

the upper bound in Chebyshev’s inequality.

In the exercises at the end of this chapter, we will use ideas of Selberg (but not

the Selberg sieve) to examine a serious limitation of sieve methods: the so-called

parity problem. Even if we have very good estimates for the error term, sieves have

a fundamental flaw: they cannot distinguish (on their own) between numbers with

an odd number of prime factors and those with an even number of prime factors.

In particular, sieves cannot really distinguish between (a) primes and (b) products

of two primes of roughly equal size. As a result, sieves are only useful in handling

certain types of problems. In order to get around these limitations, one has to

cleverly combine sieves with other methods. We will see one such workaround in the

final lecture of this course...
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9.1 Chebyshev via Selberg

In this section, we will prove the upper bound from Chebyshev’s inequality using

Selberg’s approach. Along the way, we will wind up proving a special case of Sel-

berg’s sieve, which will shed some light on the ideas that go into the proof of the

more-general theorem.

We begin by recalling the basic setup from Chapters 8 and 8.6. Let A = N\[1, x]

so that

S(A , z) = #{n 6 x : n is not divisible by any prime in P 6 z}.

By inclusion-exclusion (cf. equation (8.4.1)), we have

S(A , z) =
X

n6x

X

d|(n,P (z))

µ(d) =
X

d|P (z)

µ(d)

�
x

d

⌫
.

Then,

S(A , z) =
X

d|P (z)

µ(d)
x

d
+O(2⇡(z)) = x

Y

p6z

✓
1�

1

p

◆
+O(2⇡(z)).

Using a more refined analysis to bound

X

d|P (z)

µ(d)

 �
x

d

⌫
�

x

d

!
,

namely Exercise 7.1, it is possible to show that

S(A , z) = x
Y

p6z

✓
1�

1

p

◆
+O

 
x log z exp

✓
�
log x

log z

◆!
.

Selberg’s idea was to replace µ(d) with a quadratic form that is chosen in an

optimal way. His method relies on the following key observation:
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If �1 = 1 and (�n) is a sequence of arbitrary real numbers, then since

X

d|m

µ(d) =

8
<

:
1 if m = 1

0 otherwise,

we have

X

d|m

µ(d) 6

0

@
X

d|m

�d

1

A
2

.

Therefore,

S(A , z) =
X

n6x

X

d|(n,P (z))

µ(d)

6
X

n6x

0

@
X

d|(n,P (z))

�d

1

A
2

=
X

n6x

X

d1,d2|(n,P (z))

�d1�d2

=
X

d1,d2|P (z)

�d1�d2
X

n6x

[d1,d2]|n

1,

where [d1, d2] = lcm[d1, d2].

Now, since #{n 6 x : d | n} =
⌅
x

d

⇧
= x

d
+O(1), then

S(A , z) 6 x
X

d1,d2|P (z)

�d1�d2
[d1, d2]

+O

0

@
X

d1,d2|P (z)

|�d1 ||�d2 |

1

A .

For convenience, assume that �d = 0 for all d > z. Then

S(A , z) 6 x
X

d1,d26z

�d1�d2
[d1, d2]

+O

0

@
X

d1,d26z

|�d1 ||�d2 |

1

A .

This error term is actually better than what we obtain via standard inclusion-

37



exclusion. Since [d1, d2](d1, d2) = d1d2 and since
P

e|d '(e) = d, then

X

d1,d26z

�d1�d2
[d1, d2]

=
X

d1,d26z

�d1�d2
d1d2

(d1, d2)

=
X

d1,d26z

�d1�d2
d1d2

X

e|(d1,d2)

'(e)

=
X

e6z

'(e)
X

d1,d26z

e|(d1,d2)

�d1�d2
d1d2

=
X

e6z

'(e)

0

BB@
X

d6z

e|d

�d
d

1

CCA

2

=
X

e6z

'(e)u2
e
,

where ue =
P

d6z

e|d

�d
d
.

Our objective now is to minimize the quadratic form
P

e6z
'(e)u2

e
. By Möbius

inversion,

�e

e
=
X

e|d

µ(d/e)ud.(9.1.1)

Consequently, we have the constraints ue = 0 for any e > z (by definition of ue) andP
e6z

µ(e)ue = �1 = 1 (using (9.1.1)).

Let V (z) =
P

d6z

µ
2(d)
'(d) . Then,

X

e6z

'(e)

✓
ue �

µ(e)

'(e)V (z)

◆2

+
1

V (z)
=
X

e6z

 
'(e)u2

e
�

2ueµ(e)

V (z)
+

µ2(e)

'(e)V 2(z)

!
+

1

V (z)

=
X

e6z

'(e)u2
e
.

This shows that the minimum value of
P

e6z
'(d)u2

e
is 1

V (z) and occurs at

ue =
µ(e)

'(e)V (z)
.

Therefore, the optimal choice of �e is

�e = e
X

e6z

e|d

µ(d/e)µ(d)

'(d)V (z)
.
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Hence,

S(A , z) 6 x

V (z)
+O

0

@
X

d1,d26z

|�1||�2|

1

A .

Now,

V (z)�e = e
X

d6z

e|d

µ(d/e)µ(d)

'(d)
= e

X

t6 z
e

µ(t)µ(et)

'(et)

= e
X

t6 z
e

(t,e)=1

µ2(t)µ(e)

'(e)'(t)
= µ(e)

Y

p|e

✓
1 +

1

p� 1

◆ X

t6 z
e

(t,e)=1

µ2(t)

'(t)
.

Observe that Y

p|e

✓
1 +

1

p� 1

◆ X

t6 z
e

(t,e)=1

µ2(t)

'(t)
6
X

d6z

µ2(d)

'(d)
.

(To see this, note that for any squarefreem dividing e, we have
Q

p|m
1

p�1 =
Q

p|m
1

'(p) .

Then, using the change of variables d = tm, we see that if t 6 z

e
and m | e then

tm 6 z.) By taking absolute values, we obtain

|V (z)||�e| 6 |V (z)|,

and so |�e| 6 1 for all e. Therefore,

S(A , z) 6 x

V (z)
+O

0

@
X

d1,d26z

|�d1 ||�d2 |

1

A

=
x

V (z)
+O(z2).

We have just proven the following theorem:

Theorem 9.1.1. Let V (z) =
P

d6z

µ
2(d)
'(d) , and let A = N \ [1, z]. Then,

S(A , z) 6 x

V (z)
+O(z2)

as x, z ! 1.

39



We can use Theorem 9.1.1 to prove the upper bound from Chebyshev’s inequality.

Recall that

⇡(x) 6 S(A ,P, z) + z.

Note that

V (z) >
X

d6z

µ2(d)

d
=

X

d6z

d squarefree

1

d
� log z,

where the last bound follows from partial summation and the fact that
X

d6z

d squarefree

1 ⇠
z

⇣(2)

Hence,

⇡(x) ⌧
x

log z
+ z2.

Taking z =
⇣

x

log x

⌘1/2
, we obtain

⇡(x) ⌧
2x

log x� log log x
+

x

log x
⌧

x

log x
.

Therefore, we have

⇡(x) ⌧
x

log x
,

as desired.

Let us pause briefly to compare what we obtain using Selberg’s Sieve versus with

Brun’s Sieve. Brun’s sieve yields a main term of

x
Y

p6z

✓
1�

1

p

◆
,

while Selberg’s sieve yields a main term of

x
X

d6z

µ2(d)

'(d)

.

Notice that these are both O(x/ log z), so they have the same order of magnitude.

The important distinction is that Selberg’s method gives a smaller error term than

what one obtains using Brun’s sieve.
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9.2 Selberg’s Sieve

Now we generalize the ideas from the previous section. Recall that for a set of

integers A , we assume that

#Ad = #A g(d) + r(d),

where g : N ! [0, 1] was a multiplicative function and r(d) plays the role of an error

term. For Selberg’s sieve, it will be natural to introduce a new function, f , where

g(d) = 1/f(d). Then we have

#Ad =
#A

f(d)
+ r(d),

and f is a multiplicative function with f(p) > 1 for all p 2 P.

Theorem 9.2.1 (Selberg’s sieve). Let X > 0 and let f be a multiplicative function

satisfying f(p) > 1 for any prime p 2 P such that for any squarefree integer d

composed of primes in P we have

#Ad =
#A
f(d)

+ r(d)

for some real number r(d). Let f1 be the function satisfying

f(n) =
X

d|n

f1(d)

that is uniquely determined by the Möbius inversion formula. Let

V (z) :=
X

d6z

d|P (z)

µ2(d)

f1(d)
.

Then

S(A ,P, z) 6 #A

V (z)
+O

⇣ X

d1,d26z

d1,d2|P (z)

|r([d1, d1])|
⌘
.

Proof. The proof follows in much the same manner as the proof of Theorem 9.1.1.

For details, see pp. 120-123 in Cojocaru and Murty’s book.
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In order to use Selberg’s sieve, we will need to bound 1
V (z) . To do this, we make

use of the following lemma:

Lemma 9.2.2. Let f̃ be a completely multiplicative function with f̃(p) := f(p) for

all primes p and let

P (z) :=
Y

p 62P
p6z

p.

Then:

(i) V (z) >
X

e6z

p|e)p|P (z)

1

f̃(e)

(ii) f(P (z))V (z) > f1(P (z))
X

e6z

1

f̃(e)
.

Proof. (i) For d | P (z), using the fact that f(p) = f1(p) + 1, we have

f(d)

f1(d)
=
Y

p|d

f(p)

f1(p)
=
Y

p|d

✓
1�

1

f(p)

◆�1

=
Y

p|d

X

n>0

1

f(p)n
=
X0

k

1

f̃(k)
,

where the sum is composed of prime divisors of d. Then

V (z) =
X

d6z

d|P (z)

µ2(d)

f(d)

X0

k

1

f̃(k)
>

X

e6z

p|e)p|P (z)

1

f̃(e)
.

(ii) As in (i), we have

f(P (z))

f1(P (z))
V (z) =

Y

p 62P
p<z

0

@
X

n>0

1

f(p)n

1

A
X

d6z

d|P (z)

µ2(d)

f(d)

X0

k

1

f̃(k)

>
X

e6z

1

f̃(e)
.
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9.3 Twin primes, revisited

Recall the setting of Example 2 from Brun’s sieve: let

A ··= {n(n+ 2) : 1 6 n 6 x}

Then,

#Ad =
N(d)

d
x+ r(d),

where r(d) 6 N(d) 6 2!(d) for d|P (z). From this, f(d) = d

N(d) . Hence, by Selberg’s

sieve, we have

S(A , z) 6 x

V (z)
+O

⇣ X

d1,d26z

d1,d2|P (z)

2!([d1,d2])
⌘
.

We will use Lemma 9.2.2 to bound V (z), but first let’s study the error term.

Since 2!(d) = ⌧(d) for d squarefree, then

X

d1,d26z

d1,d2|P (z)

2!([d1,d2]) 6
✓ X

d6z

d squarefree

2!(d)
◆2

6
✓X

d6z

⌧(d)

◆2

6 (z log z)2,

where the last bound follows from Exercise 9.2. Now we bound V (z): note that

the condition p|e ) p|P (z) is trivially satisfied for e 6 z. Now, recall that f̃ is the

completely multiplicative function defined by f̃(p) = f(p), and since

f(p) =

8
<

:
p if p = 2,
p

2 if p > 2,

then
1

f̃(d)
6 2⌦(d)

d
.
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Therefore, by (i) of Lemma 9.2.2,

V (z) >
X

d6z

1

f̃(d)

>
X

d6z

2⌦(d)

d

>
X

d6z

⌧(d)

d

� (log z)2,

where the last bound follows from Exercise 9.2. This shows that

S(A , z) ⌧
x

log2 z
+O(z2 log2 z).

Now, let ⇡2(x) denote the number of twin primes less than or equal to x and

note that if n, n + 2 are both prime then n 6 z or both n, n + 2 have only prime

factors exceeding z. Hence,

⇡2(x) 6 S(A , z) + z.

Letting z = x
1
4 , we obtain the upper bound

⇡2(x) ⌧
x

log2 x
.

Compare this bound with the one obtained from Brun’s sieve: In Corollary 8.6.2,

we showed that

⇡2(x) ⌧
x log2(x)

log2 x
.

Therefore, via Selberg’s sieve we were able to improve the bound for twin primes.
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9.4 Exercises

Exercise 9.1. Use the method of Lagrange multipliers to find the minimal value of

the quadratic form X

e6z

e|P (z)

f1(e)u
2
e
.

This is the diagonal quadratic form that appears in the proof of the general version

of Selberg’s sieve.

Exercise 9.2. Show that X

n6x

⌧(n) ⇠ x log x

as x ! 1.

Exercise 9.3 (Brun-Titchmarsh). Let a and k be positive coprime integers. Let

A := {n 6 x : n ⌘ a (mod k)},

P := {p : (p, k) = 1},

and

P :=
Y

p2P
p<z

p.

(a) Let d be a squarefree number composed of primes in P. Show:

#Ad =
x

k
·
1

d
+O(1).

(b) Show that, for all 0 < z < x, we have

⇡(x; k, a) 6 z + S(A ,P, z).

(c) Use Selberg’s sieve to show that, for all k < z,

S(A ,P, z) 6 x

'(k) log z
+O(z2).

Hint: Begin by proving that,

'(P )

P
=
'(k)

k
,
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where

P (z) :=
Y

p 62P
p<z

p.

In order to bound V (z), use part (ii) of Lemma 9.2.2.

(d) Prove the Brun Titchmarsh inequality:

⇡(x; k, a) ⌧
x

'(k) log(x/k)

for all k < x. Hint: Take z =
⇣ x

k log(x/k)

⌘ 1
2
.

Exercise 9.4. The prime number theorem with error term can be stated in the

following way: There exists a positive constant c > 0 such that for all x > 2,

 (x) = x+O(x exp(�c
p

log x)).

Show that this statement implies that

X

n6x

�(n) ⌧ x exp(�c
p
log x),

where �(n) = (�1)⌦(n) is the Liouville function.

Hint: The starting point is the identity

�µ(n) log n =
X

d|n

µ(d)⇤
⇣n
d

⌘

which can be proved by observing that

⇣ 1

⇣(s)

⌘0
=

1

⇣(s)

�⇣ 0(s)

⇣(s)
.

To relate µ(n) with �(n), note that

X

n|d

�(n) =

8
<

:
1, if n is a perfect square,

0, otherwise.
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Exercise 9.5. Let �odd(x, z) (resp. �even(x, z)) denote the number of n 6 x with

an odd (resp. even) number of prime factors, counted with multiplicity, free of prime

factors 6 z. Suppose that ⇢d is a bounded sequence of real numbers satisfying

X

d|n

µ(d) 6
X

d|n

⇢d,

with ⇢d = 0 for d > z.

(i) Use Exercise 9.4 to show that for any ✓ < 1 and any z < x✓,

�odd(x, z) 6
x

2

X

d

⇢d
d

+O(x(log z) exp(�c1
p

log x)).

Establish a similar result for �even(x, z).

Hint: The starting point is inclusion-exclusion.

(ii) Deduce that
X

d6p
x

⇢d
d

> 2 + o(1)

log x
.

Remark: This exercise demonstrates the parity problem of sieve methods: we

obtain the same bound for �odd(x,
p
x) and �even(x,

p
x), but �even(x,

p
x) = 0!
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